Introducing a unique TVET teaching and learning concept, combining state-of-the-art technologies, software, simulations, experiments and hands-on practical education, for a future proof learning environment.

The Ethiopian National TVET Policy, clearly indicates that the introduction of modern information and communication technologies (ICT) in TVET delivery and assessment is an important tool for enhancing access and quality in TVET and for developing lifelong learning opportunities. Through ICT, teaching, learning, teaching, and assessment materials, can be provided at a lower cost and supports learner-centred TVET delivery, improves access to information and knowledge and allows for self-paced learning and assessment. A systematic introduction and use of ICT solutions in TVET delivery is therefore promoted by the Government.

The Smart Classroom is a world-class learning facility, introducing a unique TVET teaching and learning concept, combining state-of-the-art technologies, software, simulations, experiments and hands-on practical education, for a future proof learning environment.

The Smart Classroom includes the following components:
- Project design
- Site-survey and recommendations
- Creation of a virtual learning environment
- Digital learning resources library
- Small scale practical demo units
- IT infrastructure
- Supply, installation and commissioning of equipment
- Training of teachers and Smart Classroom managers
- Long-term technical support, training and maintenance

The Smart Classroom for TVET includes the following components:
- Project design
- Site-survey and recommendations
- Creation of a virtual learning environment
- Digital learning resources library
- Small scale practical demo units
- IT infrastructure
- Supply, installation and commissioning of equipment
- Training of teachers and Smart Classroom managers
- Long-term technical support, training and maintenance
Secondary Education

The Smart Classroom can be customised to meet the specific needs of High Schools and Senior High Schools in Ethiopia, in order to improve process, quality, and relevance of the secondary education system. Students are prepared for a career in the sector of their choice and for continuing education, through a blended mix of hardware and software resources.

In the previous ESDP IV it was already planned to equip all secondary schools with the equipment necessary to access satellite television education and a learning programme in well-organized computer laboratories. The government continues to be committed to the expansion of ICT use in education in order to improve the quality of teaching and learning. In the plan period ESDP V integration of pedagogy, content and technology will take priority. Furthermore, ICT will be mainstreamed across core subjects of all levels. Good core foundation skills are essential for students to benefit from ICT based learning. Rather than a stand-alone ICT course, activities will exist for all core subjects that demand the use of ICT.

The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. The Digital Learning Resource Library for secondary education covers 3,000 lessons. The typical STEM ICT-based lab configuration includes the following 12 themes:

- Architectural technology
- Construction engineering
- Electronics technology
- Energy in buildings
- Engineering design
- Biomedical technology
- Mobile robotics
- Mechatronics
- Manufacturing technology
- Mass transportation
- Industrial robotics
- Transportation technology

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

- Teacher led presentation room
- Practical demo and training units linked to the Digital Learning Resource Library
- Student exploration and investigation room
- Teacher exploration and investigation room
- Example topics for Research, Design & Technology
- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

Higher Education STEM programmes

The Ethiopian Government gives higher education a central position in its strategy for social and economic development. Therefore in the past 10 years, the government has demonstrated continued commitment to expanding equitable access to quality and relevant higher education. With the rapid expansion of higher education institutions, site resources and other problems have emerged. In light of massive resource allocations to higher education, universities still report insufficient supplies of text and reference books, laboratory and workshop equipment and access to ICT facilities. In the second Growth and Transformation Plan national innovation system and relations among innovation institutes will be strengthened, capacity of quality and standards infrastructures will be further improved, curricula on quality and standards will be designed, and the medium and large manufacturing industries will be supported and encouraged using their own research units. The smart classrooms will ensure that Higher Education Institutes will be better equipped, and their students will be enabled to support the GTP II.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

Primary Education

The National Learning Assessment (NLA) has shown that improving learning achievements for Grade 6, 8, 10 and 12 students remains challenging. This is mainly reflect in student learning and acquisition of basic skills such as literacy and numeracy which contribute to observed poor attainment and achievement. It is acknowledged that integration of ICT to primary and secondary education can improve learning outcomes. This is acknowledged by the OECD and by donors, such as the World Bank, which included the component improving the Quality of learning and teaching through the use of Information and Communications Technology (ICT) in the General Education Quality Improvement Project II.

The Smart Classroom active learning program for primary education is composed of creative hands-on tasks and interactive virtual software applications that work together fluidly. These activities encourage children to explore scientific scenarios by themselves, and enables them to explain what they have learned about STEM.

A combination of high-quality content and practical experiment kits, provides teachers with the necessary tools to ensure the STEM learning experience becomes very existing and understandable for young children.

This specific primary education Digital Learning Resource Library covers more than 1,000 lessons, including 3D00 lesson inquiry-based digital investigations and simulations.

The Smart Classroom can be used to teach the specific needs of High Schools and Senior High Schools in Ethiopia, in order to improve process, quality, and relevance of the secondary education system. Students are prepared for a career in the sector of their choice and for continuing education, through a blended mix of hardware and software resources.

The typical primary education STEM lab configuration includes the following 12 themes:

- Life science
- Earth Science
- Physical Science
- Mathematics
- Engineering
- Science Practices

In the in the previous ESDP IV it was already planned to equip all secondary schools with the equipment necessary to access satellite television education and a learning programme in well-organised computer laboratories. The government continues to be committed to the expansion of ICT use in education in order to improve the quality of teaching and learning. In the plan period ESDP V integration of pedagogy, content and technology will take priority. Furthermore, ICT will be mainstreamed across core subjects at all levels. Good core foundation skills are essential for students to benefit from ICT based learning. Rather than a stand-alone ICT course, activities will exist for all core subjects that demand the use of ICT.

The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. Within a wealth of practical hands-on and virtual experiments the Smart Classroom can significantly contribute to improved Ethiopian General Secondary Education Certificate and Ethiopian Higher Education Entrance Certificate Examination outcomes.

The Ethiopian Government gives higher education a central position in its strategy for social and economic development. Therefore in the past 10 years, the government has demonstrated continued commitment to expanding equitable access to quality and relevant higher education. With the rapid expansion of higher education institutions, site resources and other problems have emerged. In light of massive resource allocations to higher education, universities still report insufficient supplies of text and reference books, laboratory and workshop equipment and access to ICT facilities. In the second Growth and Transformation Plan national innovation system and relations among innovation institutes will be strengthened, capacity of quality and standards infrastructures will be further improved, curricula on quality and standards will be designed, and the medium and large manufacturing industries will be supported and encouraged using their own research units. The smart classrooms will ensure that Higher Education Institutes will be better equipped, and their students will be enabled to support the GTP II.

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

Teacher led presentation rooms

- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials

Student exploration and investigation rooms

- Based on maximum 32 students
- 16 workstations direct access to Digital Library server
- Practical work stations and training units linked to the Digital Resources Library

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

Teacher led presentation rooms

- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials

Student exploration and investigation rooms

- Based on maximum 32 students
- 16 workstations direct access to Digital Library server
- Practical work stations and training units linked to the Digital Resources Library

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

Teacher led presentation rooms

- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials

Student exploration and investigation rooms

- Based on maximum 32 students
- 16 workstations direct access to Digital Library server
- Practical work stations and training units linked to the Digital Resources Library

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

Teacher led presentation rooms

- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials

Student exploration and investigation rooms

- Based on maximum 32 students
- 16 workstations direct access to Digital Library server
- Practical work stations and training units linked to the Digital Resources Library

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom for integration of STEM in Higher Education include the following rooms:

Teacher led presentation rooms

- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials

Student exploration and investigation rooms

- Based on maximum 32 students
- 16 workstations direct access to Digital Library server
- Practical work stations and training units linked to the Digital Resources Library

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC simulation
- CNC manufacturing
- Machine tools

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.
Secondary Education

The Smart Classroom can be customised to meet the specific needs of High Schools and Senior High Schools in Ethiopia, as well as to improve process, quality and relevance of the second education system. Students are prepared for a career in the sector of their choice and for continuing education, through a blended mix of hardware and software resources.

Higher Education STEM programmes

The Ethiopian Government gives higher education a central position in its strategy for social and economic development. Therefore in the past 10 years, the government has demonstrated continued commitment to expanding equitable access to quality and relevant higher education. With the rapid expansion of higher education institutions, new requirements and other problems have emerged. In spite of massive resource allocations to higher education, universities still report insufficient supplies of text and reference books, laboratory and workshop equipment and access to ICT facilities. In the second Growth and Transformation Plan, a national innovation system will be established, to increase the quality and standards of educational infrastructure, and to provide research units with the necessary equipment and access to ICT facilities. The smart classroom will ensure that Higher Education Institutes will be better equipped, and their students will be enabled to support the GTP II.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

Example topics for Research, Design & Technology

- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & Fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC woodwork
- CNC manufacturing
- Machining tools

The Smart Classroom for integration of STEM in Higher Education include the following rooms:
- Teacher led presentation rooms
- Based on maximum 32 students
- Direct access to Digital Learning Resource Library for lecturers
- Numerous presentations and background materials
- Example topics for Research, Design & Technology
- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & Fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC woodwork
- CNC manufacturing
- Machining tools

Student exploration and investigation rooms
- Based on maximum 32 students
- 10 workstations direct access to Digital library server
- Structural design and training units linked to the Digital Resources Library
- Teacher led presentation rooms
- Based on maximum 32 students
- Direct access to Digital learning resource library for lecturers
- Numerous presentations and background materials

The typical primary education Digital Learning Resource Library covers more than 1,000 lessons, including 300 exciting inquiry-based digital investigations and simulations.

In the previous ESDP (IV) it was already planned to equip all secondary schools with the equipment necessary to access satellite television education and a learning programme in well-organised computer laboratories. The government continues to be committed to the expansion of ICT use in education in order to improve the quality of teaching and learning. In the plan period of ESDP V integration of pedagogy, content and technology will take priority. Furthermore, ICT will be mainstreamed across core subjects at all levels. Good core foundation skills are essential for students to benefit from ICT based learning. Rather than a stand-alone ICT course, activities will exist for all core subjects that demand the use of ICT.

The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. With a wealth of practical hands-on and virtual assignments, the Smart Classroom can significantly contribute to improved Ethiopian general education quality improvement project II.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

Science Practices

- Architectural technology
- Construction engineering
- Electronic technology
- Energy in buildings
- Engineering design
- Biomedical technology
- Mobile robots
- Mechanics
- Manufacturing technology
- Mass transportation
- Industrial robotics
- Transportation technology
- Rapid Prototyping/Industrial Manufacturing
- 3D printing and 3D scanning
- Control & Instrumentation
- Mechanical & Fluid power
- Computer programming
- Automotive Engineering
- Electronics
- Laser cutting/engraving
- CNC woodwork
- CNC manufacturing
- Machining tools

The hands-on digital programme teaches Maths, Science, Engineering and English language skills to primary school children.

The typical primary education STEM lab configuration includes the following 12 themes:

- Life science
- Earth science
- Physical Science
- Mathematics
- Engineering
- Science practices
- Biomedical technology
- Construction engineering
- Electronic technology
- Energy in buildings
- Engineering design
- Architectural technology

The Digital Learning Resource Library for secondary education covers more than 3.000 lessons. The typical STEM ICT-based lab configuration includes the following 12 themes:

- Biomedical technology
- Electronics technology
- Construction engineering
- Energy in buildings
- Engineering design
- Architectural technology
- Mobile robots
- Mechanics
- Manufacturing technology
- Mass transportation
- Industrial robotics
- Transportation technology

The National Learning Assessment (NLA) has shown that improving learning achievements for Grade 4, 8, 10 and 12 students remain challenging. This is mostly reflected in student learning and expectation of basic skills such as literacy and numeracy which contribute to observed poor attainment and achievement. It is acknowledged that integration of ICT in primary and secondary education can improve learning outcomes. This is acknowledged by the GDE and by donors, such as the World Bank, which included the component improving the Quality of Learning and Teaching through the use of Information and Communication Technology (ICT) in the General Education Quality Improvement Project II.

The Smart Classroom active learning program for primary education is composed of creative hands-on tasks and interactive virtual software applications that work together flexibly. These activities encourage children to explore scientific scenarios by themselves, and enables them to explain what they have learned about STEM.

A combination of high quality content and practical experiment kits, provides teachers with the necessary tools to ensure the STEM learning experiences becomes very exciting and understandable for young children.

The Smart Classroom active learning program for primary education is composed of creative hands-on tasks and interactive virtual software applications that work together flexibly. These activities encourage children to explore scientific scenarios by themselves, and enables them to explain what they have learned about STEM.

A combination of high quality content and practical experiment kits, provides teachers with the necessary tools to ensure the STEM learning experiences becomes very exciting and understandable for young children.

The Smart Classroom active learning program for primary education is composed of creative hands-on tasks and interactive virtual software applications that work together flexibly. These activities encourage children to explore scientific scenarios by themselves, and enables them to explain what they have learned about STEM.

A combination of high quality content and practical experiment kits, provides teachers with the necessary tools to ensure the STEM learning experiences becomes very exciting and understandable for young children.
In the previous EDP IV it was already planned to equip all secondary schools with the equipment necessary to access satellite television, education and a learning programme in well-organized computer laboratories. The government continues to be committed to the expansion of ICT use in education in order to improve the quality of teaching and learning. In the plan period of EDP V integration of pedagogy, content and technology will take priority. Furthermore, ICT will be mainstreamed across core subjects at all levels. Good core foundation skills are essential for students to benefit from ICT-based learning. Rather than a stand-alone ICT course, activities will exist for all core subjects that demand the use of ICT.

The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured. The Digital Learning Resource Library provides students with a wide range of educational experiences that integrate Science, Technology, Engineering and Mathematics (STEM). Modern technologies, with an emphasis on exploring science are featured.

The typical primary education Digital Learning Resource Library covers more than 1,000 lessons, including 3D modeling, virtualization and simulation of digital investigations and simulations.

The typical primary education STEM lab configuration includes the following 12 themes:

- Architectural technology
- Construction engineering
- Electronic technology
- Energy in buildings
- Engineering design
- Biomedical technology
- Mobile robotics
- Mechanics
- Manufacturing technology
- Mass transportation
- Industrial robotics
- Transportation technology
- Automation engineering

In the Integrated STEM curriculum for secondary education, the focus is on developing STEM competencies across all core subjects. The curriculum is designed to integrate Science, Technology, Engineering and Mathematics (STEM) across all levels of education. The curriculum emphasizes the integration of technology in teaching and learning, with a focus on hands-on activities and simulations. The curriculum is designed to foster critical thinking, problem-solving, and collaborative learning.

The Ethiopian Government gives higher education a central position in its strategy for social and economic development. Therefore in the past 10 years, the government has demonstrated continued commitment to expanding equitable access to quality and relevant higher education. With the rapid expansion of higher education institutions, new resources and challenges have emerged. In spite of massive resource allocations to higher education, universities still report insufficient supplies of text and reference books, laboratory equipment, and access to ICT facilities. In the second Growth and Transformation Plan a national innovation system and relations among innovation institutes will be strengthened, capacity of quality and standards infrastructures will be further improved, curriculums are quality and standards will be designed, also the medium and large manufacturing industries will be supported and encouraged to use their own research units. The smart classroom will ensure that higher education institutes will be better-equipped, and their students will be enabled to support the CTP II.

The Ethiopian Government gives higher education a central position in its strategy for social and economic development. Therefore in the past 10 years, the government has demonstrated continued commitment to expanding equitable access to quality and relevant higher education. With the rapid expansion of higher education institutions, new resources and challenges have emerged. In spite of massive resource allocations to higher education, universities still report insufficient supplies of text and reference books, laboratory equipment, and access to ICT facilities. In the second Growth and Transformation Plan a national innovation system and relations among innovation institutes will be strengthened, capacity of quality and standards infrastructures will be further improved, curriculums are quality and standards will be designed, also the medium and large manufacturing industries will be supported and encouraged to use their own research units. The smart classroom will ensure that higher education institutes will be better-equipped, and their students will be enabled to support the CTP II.

The Smart Classroom active learning program for primary education is composed of creative hands-on tasks and interactive virtual software applications that work together flexibly. These activities encourage children to explore scientific scenarios by themselves, and enables them to explain what they have learned about STEM.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.

The Smart Classroom can be used for the improvement of Higher Education Science, Technology, Engineering and Mathematics (STEM) programmes.
The Ethiopian National TVET Policy, clearly indicates that the introduction of modern information and communication technologies (ICT) in TVET delivery and assessment is an important tool for enhancing access and quality of TVET and for developing lifelong learning opportunities. Through ICT, teaching, learning, training, and assessment materials, can be provided at a lower cost and supports learner-centric TVET delivery, improves access to information and knowledge and allows for self-paced learning and assessment. A systematic introduction and use of ICT solutions in TVET delivery is therefore promoted by the Government.

The Devotra Smart Classroom provides a worldwide learning facility, introducing a unique TVET teaching and learning concept, combining state-of-the-art technologies, software, simulations, experiments and hands-on practical education, making TVET Institutions, TVET colleges and Polytechnics TVET Colleges future proof. The Devotra Smart Classroom harmonizes emerging technologies and fully integrates ICT based learning and best practices in TVET.

The Devotra Smart Classroom optimizes traditional hands-on learning in a cost-efficient way and allows for better quality teaching at the workshops, through better instruction and preparation, amongst others, through:
- Presentations
- Digital lessons
- Investigations
- Engineering simulations
- Virtual experiments
- Engineering simulations
- Virtual experiments
- Practical exercises
- Projects and group work

The Smart Classroom for TVET includes the following components:
- Project design
- Site-surveys and recommendations
- Creation of a virtual learning environment
- Digital learning resources library
- Small scale practical demo units
- IT infrastructure
- Supplies, installation and commissioning of equipment
- Training of teachers and Smart Classroom managers
- Long term technical support, training and maintenance

The Smart Classroom for TVET includes the following components:
- 3D/2D design software
- Mechanical Energy
- Inductive controls
- Fluidics and pneumatics
- Automotive
- Machining tools & CNC
- CNC simulation
- Industrial controls
- Materials & processes
- Power electronics
- Project design
- Site-surveys and recommendations
- Creation of a virtual learning environment
- Digital learning resources library
- Small scale practical demo units
- IT infrastructure
- Supplies, installation and commissioning of equipment
- Training of teachers and Smart Classroom managers
- Long term technical support, training and maintenance

The Government of Ethiopia (GOE) wishes to include ICT in education at all levels to improve access, quality and relevance of education. The Education Sector Development Programme (2016-2020) includes the General Education Quality Programme which has, amongst others, ICT as an integrated component. In addition, a separate component dedicated to ICT is included with the objective to provide ICT infrastructure, facilities and resources to support teaching and learning and students' development for work in an increasingly digital environment.

The Devotra Smart Classroom integrates all of the above and brings 21st century education systems to Ethiopia. The Smart Classroom is available for TVET, Primary, Secondary and Higher Education, allowing for smooth integration of teaching and learning staff levels.

The Devotra Smart Classroom seamlessly integrates the following components:
- Digital learning resources library with 8,500 ready-made learning units
- IT infrastructure
- Virtual experiments
- Engineering simulations
- Secondary level ICT laboratory for hands-on exploration, investigation and production
- Top quality ergonomic designed furniture for a safe and modern learning environment
- Future proof solution that is available offline or online via a suitable e-learning platform
- Teacher training, technical support and after-sales

The Devotra Smart Classroom acts as an incubator area for ideas based on industry and labour market requirements. It changes students and teachers’ mind-sets and brings innovation, spurs creative and catalytic thinking, triggers students’ exploration skills, enhances problem-solving based learning and provides the opportunity to teach and learn design, programming, engineering and production skills.
Introducing a unique TVET teaching and learning concept, combining state-of-the-art technological software, simulations, experiments and hands-on practical education, for a future proof learning environment.

The Ethiopian National TVET Policy, clearly indicates that the introduction of modern information and communication technologies (ICT) in TVET delivery and assessment is an important tool for enhancing access and quality in TVET and for developing lifelong learning opportunities. Through ICT, training, teaching, learning, and assessment materials, can be provided at a lower cost. It supports learner-centred TVET delivery, improves access to information and knowledge and allows for self-paced learning and assessment. A systematic introduction and use of ICT solutions in TVET delivery is therefore prioritized by the Government.

The Devotra Smart Classroom provides a world-class learning facility, introducing a unique TVET teaching and learning concept, combining state-of-the-art technologies, software, simulations, experiments and hands-on practical education, making TVET Institutions, TVET Colleges and Polytechnics TVET Colleges future-proof. The Devotra Smart Classroom harnesses emerging technologies and fully integrates ICT based learning and best practices in TVET.

The Devotra Smart Classroom optimizes traditional hands-on learning in a cost-efficient way and allows for better quality teaching at the workshops, through better instruction and preparation, amongst others, through:

- Presentations
- Digital lessons
- Investigations
- Engineering simulations
- Virtual experiments
- Project design
- Site-surveys and recommendations
- Creation of a virtual learning environment
- Digital learning Resources Library
- Small scale practical demo units
- IT infrastructure
- Supply, installation and commissioning of equipment
- Training of teachers and Smart Classroom managers
- Long-term technical support, training and maintenance

The Devotra Smart Classroom for TVET includes the following components:

- Project design
- Site-surveys and recommendations
- Creation of a virtual learning environment
- Digital learning Resources Library
- Small scale practical demo units
- Training of teachers and Smart Classroom managers
- Long-term technical support, training and maintenance

The Government of Ethiopia (GOE) wishes to include ICT in education at all levels to improve access, quality and relevance of education. The Education Sector Development Programme (2016-2020) includes the General Education Quality Programme which has, amongst others, ICT as an integrated component. In addition a separate component dedicated to ICT is included with the objective to provide ICT infrastructure, facilities and resources to support teaching and learning and students' development for work in an increasingly digital environment.

The Devotra Smart Classroom is an incubator area for ideas based on industry and labour market requirements. It changes students and teachers mind-sets and brings innovation, spurs creative and catalytic thinking, triggers students' exploration skills, enhances problem-solving based learning and provide the opportunity to teach and learn design, programming, engineering and production skills.

The Devotra Smart Classroom and Training acts as an incubator area for ideas based on industry and labour market requirements. It changes students and teachers mind-sets and brings innovation, spurs creative and catalytic thinking, triggers students' exploration skills, enhances problem-solving based learning and provide the opportunity to teach and learn design, programming, engineering and production skills.

Technical Vocational Education and Training

The Government of Ethiopia (GOE) wishes to include ICT in education at all levels to improve access, quality and relevance of education. The Education Sector Development Programme (2016-2020) includes the General Education Quality Programme which has, amongst others, ICT as an integrated component. In addition a separate component dedicated to ICT is included with the objective to provide ICT infrastructure, facilities and resources to support teaching and learning and students' development for work in an increasingly digital environment.

The Devotra Smart Classroom is an incubator area for ideas based on industry and labour market requirements. It changes students and teachers mind-sets and brings innovation, spurs creative and catalytic thinking, triggers students' exploration skills, enhances problem-solving based learning and provide the opportunity to teach and learn design, programming, engineering and production skills.